TTT модели: новая модель в модернизации искусственного интеллекта

Исследователи разработали новую архитектуру искусственного интеллекта под названием Test-Time Training (TTT), которая может обрабатывать значительно больший объем данных по сравнению с трансформерами при меньших вычислительных затратах.
Этот метод позволяет моделям ИИ адаптироваться и обучаться непосредственно во время использования, что открывает возможности для создания более эффективных и производительных систем искусственного интеллекта.
За последние несколько лет в сфере генеративного ИИ, властвовали модели управления на основе архитектурного строения – трансформеры. Они заложены в основе работ очень популярных систем, типа: нейросети Sora от корпорации OpenAI, а также во множестве текстовых моделях типа GPT-4, Gemini и Claude. Однако сейчас, эти трансформеры стали сталкиваться на своем пути со множеством технических ограничений, особенно когда речь идет о работе в сфере очень мощны вычислительных систем.
Главным преимуществом новой TTT моделей от трансформеров является hidden state – скрытое состояние во внутренней модели при машинном обучении. Это открывает возможность TTT моделям еще более эффективнее обрабатывать и кодировать информацию в репрезентативные переменные, при этом, не увеличивая объем своей внутренней модели при работе с данными.
Рекомендуем к прочтению:
- NASA проведет брифинг по загадочному объекту 3I/ATLAS и раскроет новые данные
- Microsoft готовит Windows к тотальной интеграции с ИИ
- Создателя культовой игры S.T.A.L.K.E.R. внесли в список нежелательных в РФ
- Google выпустила Gemini 3: интеграция в Android 17, Chrome и поисковую систему
- Google представила улучшенную ИИ-модель WeatherNext 2 для прогнозирования погоды